Oxidative N-debenzylation of N-benzyl-N-substituted benzylamines catalyzed by horseradish peroxidase[†]

Sung Soo Kim^{*} and Hwan Kyu Jung

Department of Chemistry and Center for Chemical Dynamics, Inha University, Incheon 402-751, South Korea

Received 10 September 2003; revised 15 January 2003; accepted 13 March 2003

ABSTRACT: *N*-Benzyl-*N*-substituted benzylamines and compound I of horseradish peroxidase engender electron transfer yielding the corresponding nitrogen radical cation **1**, which is simultaneously converted into **2** and **3**. Subsequently, expulsion of proton and hydroxylation yielding α -hydroxylamines are followed by the formation of benzaldehydes and benzylamines. Copyright \odot 2003 John Wiley & Sons, Ltd.

KEYWORDS: oxidation; *N*-debenzylation; horseradish peroxidase; hydrogen peroxide; amines

INTRODUCTION

The mechanism of the *N*-dealkylation of *N*-dimethylanilines catalyzed by heme enzymes and their analogs has attracted considerable attention. $1-17$ Iodosylbenzene (C_6H_5IO) catalyzed by tetraphenylporphyrinatoiron(III) chloride [Fe(III)TPPCI]¹² oxidizes *N,N*-dimethylbenzylamines by an initial electron transfer (ET) process. The reactions indicate a small negative ρ value ($\rho = -0.41$) for Fe(III)TPPCl and marginal intermolecular kinetic isotope effect (KIE), $k_H/k_D = 1.3$ with PhCH₂NMe₂ and $PhCD₂NMe₂$. The KIE and Hammett correlations in the oxidative *N*-demethylation of *N,N*-dimethylanilines catalyzed by tetrakis(pentafluorophenyl)porphyrinatoiron (III) chloride¹⁶ were investigated. The intramolecular KIE of 4-Y-*N*-methyl-*N*-trideuteriomethylanilines are much larger than intermolecular KIE with 4-Y-*N,N*dimethylanilines and 4-Y-*N,N*-ditrideuteriomethylanilines. The Hammett correlations give rise to better correlations with σ^+ (*r* = 0.995) than with σ (*r* = 0.993). The KIE profiles (plot of k_H/k_D vs the p K_a of the aniline radical cations) by lignin peroxidase– H_2O_2 and 5,10,15,20-tetraphenyl-21H,23H-porphine-*p*, *p'*, *p''*, *p''*tetrasulfonic acid iron(III) chloride– H_2O_2 for a number of ring-substituted N , N -bis(dideuteriomethyl)anilines¹⁷ show bell-shaped curves. The intermolecular KIE of 4- Y-*N,N*-dimethylanilines and 4-Y-*N,N*-trideuteriomethylanilines by horseradish peroxidase (HRP) compound $I¹⁵$

**Correspondence to:* S. S. Kim, Department of Chemistry and Center for Chemical Dynamics, Inha University, Incheon 402-751, South Korea.

E-mail: sungsoo@inha.ac.kr

† This paper is dedicated to Professor Shinjiro Kobayashi on the occasion of his retirement.

Contract/grant sponsor: Korea Science and Engineering Foundation; *Contract/grant number:* F 01-2000-6-123-01-2.

Copyright 2003 John Wiley & Sons, Ltd. *J. Phys. Org. Chem.* 2003; **16:** 555–558

were observed to be $k_H/k_D = 1$, the values being constant with variation of Y from p -OMe to p -NO₂.

RESULTS AND DISCUSSION

The reactions are shown in Schemes 1 and 2. The competitive intramolecular *N*-debenzylation of *N*-ben $zyl-N$ -substitutedbenzylamines with $HRP-H_2O_2$ has been studied through Hammett correlations and KIE. The relative rates caused by substituents $(Y = p\text{-}OCH_3, p\text{-}OCH_4)$ CH₃, H, *p*-Cl, *m*-Cl, *p*-CN and *p*-NO₂) were obtained from the $[YC_6H_4CHO]/[C_6H_5CHO]$ ratios. The $log(k_Y/$ $k_{\rm H}$) values were plotted against σ and σ^+ to yield better correlation with σ (ρ = -0.76; *r* = 0.997) than with σ^+ $(\rho = -0.51, r = 0.965).$

The Hammett correlations for the oxidation of *N,N*dimethylanilines $(\rho^+ = -0.88)^{16}$ may suggest that the electron transfer step for the formation of radical cation is involved with rate-determining step. The negative sign of ρ^+ = -0.88 is also parallel with their oxidation potentials

Table 1. Kinetic data for oxidative N-debenzylations of N-benzyl-N-substituted benzylamines by HRP

	p -OCH ₃	p -CH ₃	$p-H$	p -Cl	m -Cl	p -CN
$k_{\text{YH}}/k_{\text{HH}}$	1.64	1.30		0.609	0.491	0.310
$k_{\text{YH}}/k_{\text{YD}}$	3.43 ± 0.3	$\rho(r) = -0.76$ (0.997); $\rho^{+}(r) = -0.51$ (0.965) 1.34 ± 0.06			1.17 ± 0.02	

decreasing from p -NO₂ to p -OCH₃. The better correlation with σ in Table 1 indicates that positive charge is localized on the nitrogen atom. Compound **1** can be simultaneously transformed into either **2** or **3** (Scheme 3) since both of them are more stable than **1**. The intramolecular KIE values for $4-Y-C_6H_4N(CH_3)CD_3^{16}$ are distinct and increase from p -NO₂ ($k_H/k_D = 2.0$) to p -OCH₃ ($k_H/k_D = 3.0$). This increasing trend parallels the magnitude of pK_a of the corresponding radical cation, and suggests that there is a significant reverse electron transfer which competes with the α -deprotonation. The KIE for *p*-OCH₃, $k_H/k_D = 3.43$ in Table 1, shows a similar situation for the reversibility. In contrast, when electron transfer is the rate-determining step, no such KIE would be observed, that is, $k_H/k_D = 1$. The intermolecular KIE of $Y-C_6H_4N(CH_3)_2$ and $Y-C_6H_4N(CD_3)_2$ utilizing horseradish peroxidase compound $I¹⁵$ shows an absence of KIE. Our KIE for *m*-Cl, $k_H/k_D = 1.17$, may indicate that reverse electron transfer occurs to a small extent. Therefore, the degree of the reversibility increases as

Copyright 2003 John Wiley & Sons, Ltd. *J. Phys. Org. Chem.* 2003; **16:** 555–558

the substituent gradually approaches electron donating, m -Cl ($k_H/k_D = 1.17$), H ($k_H/k_D = 1.34$), p -OCH₃ (k_H/k_D) $= 3.34$).

CONCLUSIONS

N-Demethylation of DMA proceed through the formation of the radical cation $Y-C_6H_4N(CH_3)_2$ The reversible formation of $YC_6H_4N(CH_3)_2$ should be influenced by the substituent (Y) and the kind of oxidant. The reversibility of formation of our radical cation, $YC_6H_4CH-MH_2$ — $CH_2C_6H_5$, by HRP compound 1 increases as the substituent (Y) becomes more electron donating.

EXPERIMENTAL

Materials and methods. Benzylamine, substituted benzaldehydes $(Y = p$ -OCH₃, p -CH₃, H, p -Cl, m -Cl, p -CN and p -NO₂), substituted benzonitriles (Y = p -OCH₃ and m -Cl), LiAlD₄ and other reagents were commercial products. Horseradish peroxidase was of type VI and was obtained from Sigma. A Varian Gemini 2000 NMR spectrometer was used for the identification of the compounds. Relative quantities of the aldehydes were obtained using a Varian 3300 gas chromatograph with a DB-1 column and a flame ionization detector.

Preparation of N-benzyl-N-4-methoxybenzylamine. A solution of benzylamine (0.02 mmol) in benzene was added to a benzene solution (15 ml) of *p*-anisaldehyde (0.02 mmol) in 100 ml flask over 10 min. The mixture was stirred for 3 h and $Na₂SO₄$ was added to eliminate $H₂O$. The formation of imine was confirmed when evaporating benzene in a rotary evaporator. To the imine dissolved in methanol in an ice-bath, 1.5 equiv of NaBH4 were added very slowly. The reaction mixture was stirred at room temperature for 1 h. The solvent was evaporated and the remainder was extracted with $CH_2Cl_2-H_2O$. The CH_2Cl_2 layer was dried with Na_2SO_4 to give the pure product (4.34 g, 95% yield). NMR (CDCl₃): δ 3.8 (d, 7H, CH₃O, 2CH₂), 6.9 (d, 2H, C₆H₄), 7.2 (d, 2H, C₆H₄), 7.3 $(m, 5H, C_6H_5).$

Other benzylamines were similarly synthesized and their NMR data are given below.

N-Benzyl-N-4-methylbenzylamine. NMR (CDCl3): δ 2.4 $(s, 3H, CH_3)$, 3.8 (d, 4H, 2CH₂), 7.2–7.4 (m, 9H, C₆H₅, C_6H_4).

N-Benzyl-N-4-chlorobenzylamine. NMR (CDCl3): δ 3.8 $(d, 4H, 2CH₂), 7.2–7.4$ (m, 9H, C_6H_5 , C_6H_4).

N-Benzyl-N-3-chlorobenzylamine. NMR (CDCl3): δ 3.8 $(d, 4H, 2CH₂), 7.2–7.4$ (m, 9H, $C₆H₅, C₆H₄$).

N-Benzyl-N-4-cyanobenzylamine. NMR (CDCl₃): δ 3.8 (d, 4H, 2CH₂), 7.2–7.6 (m, 9H, C₆H₅, C₆H₄).

N-Benzyl-N-4-nitrobenzylamine. NMR (CDCl₃): δ 3.8 $(d, 4H, 2CH₂), 7.2–7.4$ (m, 5H, $C₆H₅$), 7.5 (d, 2H, $C₆H₄$), 8.2 (d, 2H, C_6H_4).

Preparation of p -CH₃OC₆H₄CD₂NHCH₂C₆H₅. 4-Methoxybenzonitrile (0.03 mol) in 20 ml of THF was added very slowly to an LiAlD₄ (0.045 mol) solution of THF in an ice-bath. The reaction mixture was then stirred for 1 day under nitrogen at room temperature. After reaction, 5% HCl solution was added slowly until the reaction mixture became acidic. The aqueous layer was separated by addition of benzene. To the aqueous layer, 3 M NaOH solution was added to make a basic solution and the amine layer was separated with benzene. 4-Methoxy(α, α dideuterio)benzylamine (0.023 mol, 77%) was then obtained by evaporation of benzene. *N*-Benzylidene-4 $methoxy(\alpha,\alpha\text{-}dideuterio)$ benzylamine was prepared by reaction of 4-methoxy(α , α -dideuterio)benzylamine (0.023 mol) and benzaldehyde (0.023 mol). This was reduced with $NaBH₄$ to give $p\text{-}CH₃OC₆H₄CD₂$ NHCH₂C₆H₄ (4.98 g, 72% yield). NMR (CDCl₃): δ 3.8 $(s, 5H, OCH₃, CH₂), 6.9$ (d, 2H, $C₆H₄$), 7.2–7.4 (m, 7H, C_6H_5 , C_6H_4).

Other deuterated benzylamines were similarly prepared and their NMR spectra are listed below.

$$
p\text{-OCH}_3\text{C}_6\text{H}_4\text{CN} \xrightarrow{\text{LiAD}_4} p\text{-OCH}_3\text{C}_6\text{H}_4\text{CD}_2\text{ND}_2
$$
\n
$$
p\text{-OCH}_3\text{C}_6\text{H}_4\text{CD}_2\text{ND}_2 + \text{C}_6\text{H}_3\text{CHO} \xrightarrow{\text{CFT}} p\text{-OCH}_3\text{C}_6\text{H}_4\text{CD}_2\text{N} = \text{CHC}_6\text{H}_3
$$

 $p\text{-OCH}_3C_6H_4CD_2N=\text{CH}C_6H_5$ \longrightarrow $\frac{\text{NaBH}_4}{\text{MoCH}}$ $p\text{-OCH}_3C_6H_4CD_2N\text{HCH}_2C_6H_5$

 m -Cl C₆H₄CH₂NHCD₂C₆H₅. NMR (CDCl₃): δ 3.8 (s, 2H, $CH₂$), 7.2–7.4 (m, 9H, $C₆H₅$, $C₆H₄$).

 m -ClC₆H₄CD₂NHCH₂C₆H₅. NMR (CDCl₃): δ 3.8 (s, 2H, CH₂), 7.2–7.4 (m, 9H, C₆H₅, C₆H₄).

Oxidations by $HRPH_2O_2$. To 650 µl of distilled water were added in the following order $200 \mu l$ of sodium phosphate buffer (pH 7.4), 40 μ l of HRP (2.5 nmol), 10 μ l of substrate (2.5 µmol) dissolved in CH₃OH and 100 µl of $H₂O₂(25 \text{ µmol})$. The reaction mixture (total volume

Copyright 2003 John Wiley & Sons, Ltd. *J. Phys. Org. Chem.* 2003; **16:** 555–558

1000 μ l) was incubated at 37 °C for 30 min with vigorous stirring. The reaction mixture was then cooled with an ice-bath and 2 ml of 5% HCl solution were added to make the salt of substituted benzylamines. 1,4-Dibromobenzene (0.02 mmol) was added to the reaction mixture as an internal standard. CH₂Cl₂ (3 ml \times 3) was added to extract the organic layer. This was dried with anhydrous $Na₂SO₄$ and concentrated to 20 µl for GC analysis.

Kinetic isotope effects. These were determined indirectly as follows. $k_{YH}/k_{YD} = k_{YH}/k_{HH} \cdot k_{HH}/k_{YD}$ was used when $Y = p\text{-}OCH_3$ and $p\text{-}Cl$, and $k_{HH}/k_{HD} = k_{HH}/k_{m-Cl}$ H^k _H \cdot *k*_{HD} can be obtained when Y = H using *m*- $ClC_6H_4CH_2$ as an internal standard.

Acknowledgements

We warmly thank the Korean Science and Engineering Foundation for financial support through F 01-2000-6- 123-01-2.

REFERENCES

- 1. Ortiz de Montellano PR. *Cytochrome P450. Structure, Mechanism, and Biochemistry* (2nd edn). Plenum Press: New York, 1995.
- 2. Guengerich FP, Macdonald TL. *Acc. Chem. Res.* 1984; **17**: 9–16.
- 3. Miwa GT, Walsh JS, Kedderis GL, Hollenberg PF. *J. Biol. Chem.* 1983; **258**: 14445–14449.
- 4. Miwa GT, Garland WA, Hodshon BJ, Lu AYH, Norhrop DB. *J. Biol. Chem.* 1980; **225**: 6049–6054.
- 5. Guengerich FP, Yun CH, Macdonald TL. *J. Biol. Chem.* 1996; **271**: 27321–27329.
- 6. Okazaki O, Guengerich FP. *J. Biol. Chem.* 1993; **268**: 1546–1552.
- 7. Macdonald TL, Gutheim WG, Martin RB, Guengerich FP. *Biochemistry* 1989; **28**: 2071.
- 8. Griffin BW, Ting PL. *Biochemistry* 1978; **17**: 2206–2211.
- 9. Van der Zee J, Duling DR, Mason RP, Eling TE. *J. Biol. Chem.* 1989; **264**: 19828–19836.
- 10. Kedderis GL, Hollenberg PF. *J. Biol. Chem.* 1983; **258**: 8129– 8183.
- 11. Kedderis GL, Koop DR, Hollenberg PF. *J. Biol. Chem.* 1980; **255**: 10174–10182.
- 12. Lindsey Smith JR, Mortimer DN. *J. Chem. Soc., Chem. Commun.* 1985; 64–65.
- 13. Manchester JI, Dinnocenzo JP, Higgins L, Jones JP. *J. Am. Chem. Soc.* 1997; **119**: 5069–5670.
- 14. Karki SB, Dinnocenzo JP, Jones JP, Korzekwa KR. *J. Am. Chem. Soc.* 1995; **117**: 3657–3664.
- 15. Goto Y, Watanabe Y, Fukuzumi S, Jones JP, Dinnocenzo JP. *J. Am. Chem. Soc.* 1998; **120**: 10762–10763.
- 16. Baciocchi E, Lanzalunga O, Lapi A, Manduchi L. *J. Am. Chem. Soc.* 1998; **120**: 5783–5787.
- 17. (a) Baciocchi E, Gerini MF, Lanzalunga O, Lapi A, Mancinelli S, Mencarelli P. *Chem. Commun.* 2000; 393–394; (b) Baciocchi E, Gerini MF, Lanzalunga O, Lapi A, Piparo MGL, Mancinelli S. *Eur. J. Org. Chem.* 2001; 2305–2310.